A comparison of the Bader–Deuflhard and the Cash–Karp Runge–Kutta integrators for the GRI-MECH 3.0 model based on the chemical kinetics code Kintecus

نویسنده

  • James C. Ianni
چکیده

The chemical kinetics and associated thermodynamics of the GRI-MECH 3.0 model is described and modeled with the Bader–Deuflhard and the Cash–Karp Runge–Kutta Integrators as implemented by W.T. Vetterling et al. in Kintecus V3.0. Comparisons are made to verify the mathematical correctness of the chemical kinetic model against those already published models and the experimental data in the literature. For the simple H2–O2 combustion model, the Cash–Karp Runge–Kutta integrator outperforms the Bader–Deuflhard method in speed and accuracy, but for combustions involving the GRI-MECH model the situation is reversed. The Bader–Deuflhard integrator is selected for the GRI-MECH runs and the selected published GRI-MECH runs in the literature. The comparisons of the Bader–Deuflhard integrator’s results and the published results from the GRI-MECH model and experimental results are in excellent agreement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of GRI-mech 3.0 Mechanism using HCCI Combustion Models and Genetic Algorithm

  This paper presents a modeling study of a CNG Homogenous Charge Compression Ignition (HCCI) engine using single-zone and multi-zone combustion models. Authors' developed code could be able to predict engine combustion and performance parameters in closed part of the engine cycle. As detailed chemical kinetics is necessary to investigate combustion process in HCCI engines, therefore, GRI-m...

متن کامل

Single Step and Non-Catalytic Process for Formaldehyde Production from Methane using Microchannel Reactor: Theoretical Analysis

Conventionally, methane is reformed into syngas, and subsequently converted into C1-oxygenates (methanol and formaldehyde). A novel option is the catalyst-free single-step conversion of methane to C1-oxygenates. This study presents a comprehensive model of methane partial oxidation to formaldehyde as an intermediate chemical species in methane oxidation process using microreactor. The dependenc...

متن کامل

Forward, Tangent Linear, and Adjoint Runge Kutta Methods in KPP–2.2 for Efficient Chemical Kinetic Simulations

The Kinetic PreProcessor (KPP) is a widely used software environment which generates Fortran90, Fortran77, Matlab, or C code for the simulation of chemical kinetic systems. High computational efficiency is attained by exploiting the sparsity pattern of the Jacobian and Hessian. In this paper we report on the implementation of two new families of stiff numerical integrators in the new version 2....

متن کامل

A Fourth Order Multirate Runge-Kutta Method with Error Control

To integrate large systems of ordinary differential equations (ODEs) with disparate timescales, we present a multirate method with error control that is based on embedded, explicit Runge-Kutta (RK) formulas. The order of accuracy of such methods depends on interpolating certain solution components with a polynomial of sufficiently high degree. By analyzing the method applied to a simple test eq...

متن کامل

GPU-Based Parallel Integration of Large Numbers of Independent ODE Systems

The task of integrating a large number of independent ODE systems arises in various scientific and engineering areas. For nonstiff systems, common explicit integration algorithms can be used on GPUs, where individual GPU threads concurrently integrate independent ODEs with different initial conditions or parameters. One example is the fifth-order adaptive Runge–Kutta– Cash–Karp (RKCK) algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003